Group outing on the 15th and 16th of April
For our April group seminar, we decided to get out of the lab and surround
ourselves with fresh Mulgimaa air at Taagepera castle. Our program was
stuffed with everything alpha-, flavi- and coronavirus related which has in
some way or other been subject to our research.
We are thankful to our hosts in Taagepera castle for the great accomodation
and good food! We are also glad that our visiting researchers from Brazil and
China could join us on the occasion!
Hopefully we can do this again soon enough!
Sainan Wang succesfully defended her PhD thesis
On the 19th of February 2024, Sainan received her PhD degree
in the Institute of Technology. The work was completed under
professor Merits' supervision and we thank the opponent,
associate professor Kenneth A. Stapleford, for his thorough
work and for the interesting seminar talk.
​
​​​
​
​
​
The thesis titled "Structure-guided insights into the functions of CHIKV nsP2" summarized in the author's own words:
Alphaviruses are enveloped viruses with positive-strand RNA genomes that are responsible for many human and animal diseases. One of the most medically important alphaviruses is chikungunya virus (CHIKV), which can cause chikungunya fever, an acute febrile disease typically accompanied by rash and debilitating and chronic arthralgia that can last for months or even years. Since its first massive outbreak at 2004, CHIKV has caused millions of cases in over 50 countries and has become a re-emerging pathogen of global importance. However, there are no licensed drugs to treat the disease caused by CHIKV infection. Alphavirus genomic RNA replication depends on the process of RNA synthesis and modification carried out by non-structural proteins (nsPs) encoded by viral RNA. nsP2 is considered as the main driving force and master-regulator of RNA replication. However, the coordination of multiple enzymatic activities and other functions of nsP2 was poorly understood. The current study provided structural basis for better understanding of the roles of nsP2 in the alphavirus replication process; it also indicated that nsP2 can be engineered to perform additional functions required for virus replication. The main conclusions of this study could be illustrated as follows: 1: We identified the crucial residues that formed the stacking interactions between nsP2 and the RNA molecule corresponding to conserved 3’ end of CHIKV genome. Disruption of these interactions was found to have detrimental effect on viral RNA replication. 2: The flexible interdomain linker, connecting the N-terminal helicase and C-terminal protease regions of nsP2, was found to be essential for CHIKV replication as well; only small changes such as the deletion of one amino acid residue and the insertion of up to 10 amino acids residues were tolerated without significant impact on viral replication. However, the deletion of three or five residues of linker was lethal for CHIKV. 3: The insertion of G3BP/Rin binding motifs into the flexible regions of nsP2 (in the linker region or between different domains of nsP2 protease) was not only tolerated but the inserted sequence was able to support replication of mutant CHIKV in both mammalian and insect cells. The same insertion could also restore the infectivity of viruses lacking G3BP binding motifs in nsP3 in mammalian cells.
Laura Sandra Lello succesfully defended her PhD thesis
On the 25th of August, Laura defended her thesis titled "Unraveling the
intricate nature of the alphavirus RNA replicase". The work was supervised
by professor Andres Merits and we thank the opponent professor
Scott Weaver from the University of Texas Medical Branch (USA).
The work summarized in the author's own words:
Alphaviruses are a genus of viruses with a positive-strand RNA genome and include multiple important human pathogens. Alphaviruses that infect mammals, birds and reptiles can be largely divided into two groups. First, viruses that cause illness characterized by arthralgia and second, viruses that cause neurological diseases. One of the most important alphaviruses medically is chikungunya virus, which can be characterized in humans by symptoms like fever, rash and joint pain with the possibility of persisting into months- or even years-long arthritis. The central part in the life cycle of every virus with an RNA genome is the RNA replication. Thus, the RNA replication, i.e., the propagation of the RNA genome, is one of the main targets for the generation of vaccines and antivirals. Despite the wide distribution of alphaviruses among humans, no licenced vaccines or antiviral drugs are available. This emphasizes the importance of acquiring detailed information on the fundamental principles of the RNA replication. The replication of alphavirus genomes is performed by four specific proteins, called the replicase proteins. These replicase proteins assemble into functional replication complexes that carry out the propagation of the RNA genome. In this thesis, the formation of the replication complexes was studied on the example of 10 different alphaviruses. The prerequisite for the formation of active replication complexes is the replicase proteins recognizing their genome, binding it and only then they can initiate the replication. Here, we discovered that some alphavirus replicases can recognize and replicate RNA sequences originating from different alphaviruses, whereas some replicases demonstrated high specificity toward their own genome. Furthermore, we found that functional replication complexes can be formed from replicase proteins which originate from different viruses (i.e., hybrid replicases). Using these hybrid replicases we demonstrated which replicase proteins account for recognizing the virus genome specific elements and determine whether to replicate the genome or not. In addition, we showed that template constructs which include alphavirus genome specific elements and encode for reporter proteins are activated in cells that are infected with relevant alphaviruses. Thus, such biosensors are expressed in cells upon alphavirus infection and the infection of cells can be confirmed by visually observing the infected cells turning green. Finally, using the information obtained in this thesis, we participated in a study which resulted in acquiring the 3D structure of the central part of the alphavirus replicase, the catalytic subunit of the nsP4, and studied the importance of some structurally key elements using structure guided mutagenesis.
Studies included in this thesis offer new information on the RNA replication of alphaviruses. The possibility of forming active hybrid replication complexes sheds light on alphavirus replication in cases where multiple viruses have infected a single cell. The ability of the alphavirus replicases to recognize RNA elements of different viruses offers insights into the possible recombination of the alphavirus genomes and, more generally, the evolution of alphaviruses.